
Learning Assumptions for
Compositional Verification

Jamieson M. Cobleigh

Dimitra Giannakopoulou

Corina P_s_reanu

RIACS Technical Report 02.09

November 2002

Learning Assumptions for
Compositional Verification

Jamieson Cobleigh, University of Massachusets, Amherst

Dimitra Giannakopoulou, RIACS

Corina P_s_reanu, Kestrel Technologies

RIACS Technical Report 02.09

November 2002

Compositional verification is a promising approach to addressing the state explosion

problem associated with model checking. One compositional technique advocates proving

properties of a system by checking properties of its components in an assume-guarantee

style. However, the application of this technique is difficult because it involves non-trivial

human input. This paper presents a novel framework for performing assume-guarantee
reasoning in an incremental and fully automated fashion. To check a component against a

property, our approach generates assumptions that the environment needs to satisfy for the

property to hold. These assumptions are then discharged on the rest of the system.

Assumptions are computed by a learning algorithm. They are initially approximate, but

become gradually more_precise by means of counterexamples obtained by model checking
the component and its environment, altemately. This iterative process may at any stage

conclude that the property is either true or false in the system. We have implemented our

approach in the LTSA tool and applied it to the analysis of a NASA system.

This work was supported in part by the National Aeronautics and Space Administration

under Cooperative A_eement NCC 2-1006 with the Universities Space Research

Association (USRA).

This report is available online at ht-tp://w_,v.riacs.eduJtrs/

Learning Assumptions for Compositional Verification

Jamieson M. Cobleigh .1, Dimkra Giannakopoulou 2, and Corina S. Phs_eanu 2

Deparh'neat of Computer Science, University of Massachusets
Amherst, MA 01003-9264, USA

jcobleig@cs, umass, edu
2 NASA Ames Research Center, Moffett Field, CA 94035-1000, USA

{dimitra, pcorina}@eInail.arc.nasa.gov

Abstract. Compositional verification is a promising approach toaddressing the state explo-

sion problem associated wihh model checking. One composition_ technique advocates prov-

ing properties of a system by checking properties of its components in an assume-guarantee

......... s_le. However, the application of thistech_ique is __fficult because it involves non-trivial hu-

man input. This paper presents a novel framework for performing assume-guarantee reason-
ing in an incremental and fully automated fashion. To check a component against a property,

our approach generates assumptions that the environment needs to satisfy for the property to

hold. These assumptions are then discharged on the rest of the system. Assumptions are com-

puted by a learning algorithm. They are initially approximate, but become _adually more

precise by means of counterexamples obtained by model checking the component and its en-

vironment, alternately. This iterative process may at any stage conclude that the property is

either true or false in the system. We have implemented our approach in the LTSA tool and

applied it to the analysis of a NASA system.

1 Introduction

Our work is motivated by an ongoing project at NASA Ames Research Center on the application of

modeI checking to the verification of autonomous software. Autonomous software involves com-

plex concurrent behaviors for reacting to external stimuli without human intervention. Extensive

verification is a pro-requisite for the deployment of missions that involve autonomy.

Given some formal description of a system and of a required property, model checking auto-

matically determines whether the property is satisfied by the system. If the property is violated,

it returns a counterexample, i.e., an execution of the system that exhibits erroneous behavior. The

limitation of the approach, referred to as the "state-explosion" problem [8], is that it needs to store

the explored system states in memory, which is impossible for most realistic systems.

Compositional verification presents a promising way of addressing state explosion. It advo-

cates a "_tivi-d_-onquer" approach-where-properties-of-the system-aredec-omposed-into-prop_

erties of its components, so that if each component satisfies its respective property, then so does the

entire system. Components are therefore model checked separately. It is often the case, however,

that components only satisfy properties in specific contexts (also called environments). This has

given rise to the assume-guarantee style of reasoning [18, 21].

* This author is grateful for the support received from RIACS to undertake this research while participating

in the Summer Student Research Program at the NASA Ames Research Center.

2 JamiesonM.Cobleigh,DimitraGiannakopoulou,andCorinaS.P_5.reanu

Assume-guaranteereasoningfirstcheckswhetheracomponentM guarantees a property P,

when it is part of a system that satisfies an assumption .4. Intuitively, A characterizes ali contexts

in which the component is expected to operate correctly. To complete the proof, it must also be

shown that the remaining components in the system, i.e., M's environment, satisfy A. This style

of reasoning is typically performed in an interactive fashion. Developers first check a component

under no assumptions about the environment. If a counterexample is returned that is unrealistic

for the system under analysis, they make several attempts at manually defining an assumption that

is strong enough to eliminate false violations, but that also reflects appropriately the remaining

system.

This paper presents a novel framework for performing assume-guarantee reasoning in an incre-

mental and fully automatic fashion. Our approach iterates a process based on gradually learning

assumptions. The learning process is based on queries to component M, and on counterexamples

obtained by model checking M and its environment, alternately. Each iteration may conclude that

the reqmred property is satisfied or violated in the system ana/yzed. This process is guaranteed to

....... terminate;; in_fact, it converges to an assumption that is neces_s_ and .suffiq_¢nt for the pr0perty to

hold in the specific system.

Our approach has been implemented in the Labeled Transition Systems Analyzer (LTSA) [20],

and applied to the analysis of the Executive module of an experimental Mars Rover (K9) devel-

oped at NASA Ames. We are currently in the process of also implementing it in Java Path_finder

(JPF) [23]. In fact, as our approach relies on standard features of model checkers, it is fairly

straightforward to add in any such tool,

The remainder of the paper is organized as follows. We first provide some background in

Section 2, followed by a high level description of the framework that we propose in Section 3. The

algorithms that implement this framework are presented in Section 4. We discuss the applicab/Jity

of our approach in practice and extensions that we are considering in Section 5. Section 6 describes

our experience with applying our approach to the Executive of the K9 Rover. Finally, Section 7

presents related work, and Section 8 concludes the paper.

2 Background

The presentation of our approach is based on techniques for modeling and checking concurrent

programs implemented in the LTSA tool [20]. The LTSA supports Compositional Reachability

Analysis (CRA) of a software system based on its architecture, which, in general, has a hierarchical

structure. CRA Jncrementa_y computes and abstracts the behavior of composite components based

on the behavior of their immediate children in the hierarchy [13]. The flexibility that the LTSA

provides in selecting any component in the hierarchy for analysis or abstraction makes it ideal for

experimer_tingw_t h-our approach:

Labeled Transition Systems. The LTSA uses Labeled Transition Systems to model the behavior

of communicating components in a concurrent system. Let .Act be the universal set of observable

actions and let -r denote a local action unobservabIe to a component's environment. We use rr

to denote a special error state, which models the fact that a safety violation has occurred in the

LearningAssumptionsforCompositionalVerification 3

lnpul: .
znpu t send input send

ack , output ,,
Output: ', ,i

send output output', ,':nput

._, ack

ack

Fig. 1. Example LTSs Fig. 2.0rder Property Fig. 3. LTS for Output'

associated system. We require that the error state has no outgoing transitions. Formally, a Labeled

" --Tr_Ttibn Sy_teOf(LTS)Misafourmple (Q, c_l_.fi 6,qo-)-where:

- Q is a set of states

- o_M c .Act is a set of observable actions called the alphabet of M

- 6 _C Q × {aM 'o {7"}} × Q is a transition relation

- qo 6 Q is the initial state

We use H to denote the LTS ({Tr}, ,Act, @,rr). An LTS M = (Q, aM, 6, qo) is non-deterministic

if it contains r-transitions or if _(q, a, q'), (q, a, q") E 6 such that q' # q", Otherwise, M is deter-
ministic.

Consider a simple communication channel that consists of two components whose LTSs are

shown in Fig. 1. Note that the initial state of all LTSs in this paper is state 0. The Input LTS

receives an input when the action input occurs, and then sends it to the Output LTS with ac-

tion send. After some data is sent to it, Output produces output using the action output and

acknowledges that it has finished, by using the action ack. At this point, both LTSs return to their

initial states so the process can be repeated.

Traces. A trace cr of an LTS M is a sequence of observable actions that M can perform starting

at its initial state. For example, (input) and (input, send) are both traces of the Input LTS

in Fig. I. For S _C Act, we use a I £' to denote the trace obtained by removing from _r all

occurrences of actions a _ Z'. The set of all traces of M is called the language of M, denoted

£ (M).

P_-allel Com--_p-apgitionT-We_providem'ansitionai-semanties for parallel-composition-in_a-typical

process algebra style, although our aim here is not to define an algebra. Let M = (Q, crM, 6, qo)

and M' = (Q', aM', 6', q_). We say that M transits into M' with action a, denoted M _ Af',

if and only if (q0, a q6) E 6 and either aM = aM' and 6 = 6' for q_ # zr, or, in the special case

where q_ = 7r, M' = H.

The parallel composition operator II is a commutative and associative operator that combines

the behavior of two components by synchronizing the actions common to their alphabets and

4 JamiesonM.Cobleigh,DimitraGiannakopoulou,andCorinaS.P_sareanu

interleavingtheremainingactions.Forexample,intheparallelcompositionoftheInput and

Output components from Fig. 1, actions send and ack will each be synchromzed.

Formally, let M1 = (Q1, aMi, 5 i, ql) and M2 = (Q2 aM_, 5 2, q_) be two LTSs. IfMi =/7

or M2 =/7, then Mi I] M2 = H. Otherwise, Mi 1[M2 is an LTS M = (Q, aM, 5,qo), where

Q = Q1 x Q2, qo = (qo, q5), aM = aM1 u aM2, and 6 is defined as follows (note that the

symmetric roles are implied by the fact that the operator is commutative):

M1 _2. M_, a _ c_M2
M1 IIM2 -_ M{ [IM_

M1 -_ M;, M2 --% M_, a 7_ r

M1 IIM2 _ M; IIM_

Properties. We call a deterministic LTS that contains no 7r states a safety LTS. A safety property

is specified as a safety LTS P, whose language £; (P) defines the set of acceptable behaviors over

c_P. An LTS M satisfies P, denoted as M ,_ P, if and only ifVtr E g (M) : (or [aP) E £ (P).

When checking a property P, an error LTS denoted Per_ is created, which traps possible

violations with theTr state. Formally, the error LTS of a property, P - (Q, aP, 6, qo) is P_ =

(Q u {Tr}, aP_, 5', qo}, where c_P_ = c_P and

5'=SU{(q,a, Tr) [aE aPand_q' E S : (q,a,q') E 5)

Note that the error LTS is complete, meaning each state other than the error state has outgoing

transitions for every action in the alphabet.

For example, the Order property shown in Fig. 2 captures a desired behavior of the commu-

nication channel shown in Fig. 1. The property comprises states 0, 1 and the transitions denoted

by solid arrows. It expresses the fact that inpuus and ouuputs come in matched pairs, with the

input always preceding the output. The dashed arrows illustrate the transitions to the error

state that are added to the property to obtain its error LTS.

To detect violations of property P by component M, the parallel composition M H P_, is

computed. It has been proved that M violates P if and only if the 7r state is reachable in M II

P_ [5]. For the example system, state 7r is not reachable in Input I] Output]1 Order so

Input II Output _ Order.

Assume-Guarantee Reasoning. In the assume-guarantee paradigm a formula is a triple (A) M (P),

where M is a component, P is a property and A is an assumption about M's environment [21].

The formula is true if whenever M is part of a system satisfying A, then the system must also

guarantee P.

The LTSA is particularly flexible m performing assume-guarantee reasoning. Both assump-

tions and properties are defined as safety LTSs 3. In fact, a safety LTS A can be used as an assump-

tion or as a property. To be used as an assumption for module M, A itself is composed with M,

thus playing th__bstraction ofC_'T'g envtro_Tffbe used as a property-t_-b_h-e_lced

on/_i, A is awned into A_ and then composed with M.

To check an assume-guarantee formula (A) M (P), where both A and P are safety LTSs, the

LTSA computes A I] M I] Pe_ and checks if state 7r is reachable in the composition. If it is, then

(A) M (P) is violated by component M, otherwise it is satisfied.

3 Any LTS without 7r states can be transformed into a safety LTS by determinization.

LearningAssumptionsforCompositionalVerification 5

DeterministicAutomata and Safety. LTSs. One of the components of our framework is a learn-

ing algorithm that produces Deterministic Finite-State Automata, which our framework then uses

as safety LTSs. A Deterministic Finite-State Automaton (DFA) M is a five tuple (62, c_M, 5, qo, F)

where:

- Q is a finite set of states

- aM C_Act is a set of observable actions that make up the alphabet of 3I

- _ : Q x aM --* Q is a transition function

- q0 E Q is the imtial state

- F _c Q is the set of accepting states

For a DFA M and a string cr, we use 5(q, or) to denote the state that M will be in after reading c_

starting at state q. A string _z is said to be accepted by a DFA M = (Q, aM, 5, qo, F) if d(q0, cr) E

F. The language accepted by M, designated Z2(M) is the set {e [_(qo, _r) E F}.

The DFAs returned by the learmng algorithm in our context are complete, minimal, and prefix-

closed (an automaton M is prefix-closed if £ (-._ xs_i_-clb_d_iT_., f6r_g-E-£-(Tl,l);- e_'ery

prefix of o- is also in £ (M)). These DFAs therefore contain a single non-accepting state. They can

easily be transformed into safety LTSs by removing the non-accepting state, which corresponds to

state rr of an error LTS, and all transitions that lead into it.

3 Framework for Incremental Compositional Verification

For simplicity, let us consider the case where a system is made up of two components, 2911and Me.

As mentioned in the previous section, a formula (A) M (P) is true if, whenever M is part of a

system satisfying A, then the system must also guarantee property P. The simplest compositional

proof rule shows that if (A) M1 (P) and (true) 2_I2 (A} hold, then (true) M1 I1M2 (P) is true.

This proof strategy can also be expressed as an inference rule as follows:

(Step 1) (A) M1 (P)

(Step 2) (true) M2 (A)

(true) M1 [1M2 (P)

Note that this rule is not syrnrne_c in its use of the two components, and does not support cir-

cularity. Despite its simpliciw, our experience with applying compositional verification to several

applications has shown it to be the most useful rule in the context of safety property checking.

For the use of the compositional rule in proving (true} M1][M2 (P) to be justified, the

assumption must be more abstract than 3//2. An appropriate assumption for the rule needs to be

strong enough for M1 to satisfy P in Step 1. Moreover, the restrictions it places on M2 should

reflect -_I2's behavior. Coming up _ an appropriate assum_tibwfoYth-e_application_f

the compositional rule is a non-trivial process. So in practice, the rule is typically applied in an

iterative fashion as illustrated in Fig. 4. At each iteration i, an assumption A_ is provided based on

some knowledge about the system and on the results of the previous iteration. A model checker

can then be used to automatically apply the two steps of the compositional rule.

Step 1 is applied first, to check whether M1 guarantees P in environments that satisfy Ai. If the

result is false, it means that this assumption is too weak, i.e., A_ does not restrict the environment

JamiesonM.Cobleigh,DimitraGiaanakopoulou,andCorinaS.P_s_reanu

eoumerexamplc - stengthen a_sumption

't (stepI' <A_>M'<P>

T i :
(St*p 2) t true , _'ueI <tiMe:> M 2 <Ai> I false' _ false

...................... ___o_t_pl_
countemxample - weaken assuzaptlola

Fig. 4. Incremental compositional verification during iteration i

enough for P to be satisfied. The assumption therefore needs to be strengthened (which corre-

sponds to removing behaviors from it) with the help of the counterexample produced by Step 1. In

.... the c9nt_extof the next ass_tm_tion Ai_z_ compo_n_ent MI shou!d_n_ot exhi'.bitthe violating behavior

reflected by this counterexample, at least.

If Step 1 returns true, it means that A_ is strong enough for the property to be satisfied. To

complete the proof, Step 2 must be applied to discharge Ai on ill2. If Step 2 returns true, then

the compositional role guarantees that P holds in ilia It M2. If it returns false, further analysis is

required to identify whether P is indeed violated in 3/'1 I[_I2 or whether Ai was s_-onger than

necessary. Such analysis is usually based on the counterexample returned by Step 2.

If assumption Ai is too strong it must be weakened (i.e., behaviors must be added) in iteration

i + 1. The result of such weakening will be that at least the behavior that the counterexarnple

represents will be allowed by assumption Ai+l. The new assumption may of course be too weak,

and therefore the entire process must be repeated.

The bottleneck in the application of the above process lies in the fact that coming up with

and refining assumptions manually tends to be a mental challenge. To address this issue, we have

developed a framework that implements this iterative, incremental process in a fully automated

way. A learning algorithm, described in detail in the following section, is used for assumption

generation.

4 Algorithms

4.1 The L* Algorithm

The learning algorithm used by our approach was developed by Angluin [3] and was later im-

proved by Rivest and Schapire [22J. In this paper, we will refer to the improved version by the

name of the original algorithm, L*. L* learns an unknown regular language and produces a DFA

th_KiIYL_t-U-b__gul_lhnguage over some-alph-ab_t-L-C-. In_r-der-to-learn-U,

L* needs to interact with a Minimally Adequate Teacher, from now on called Teacher. A Teacher

needs to be able to answer correctly two types of questions from the algorithm. The first type is a

membership query, consisting of a string cr E S* ; the answer is true if _r C U, and false otherwise.

The second type of question is a conjecture, that is, a candidate DFA C whose language £: (C) the

algorithm believes to be identical to U. The answer is true if £, (C) = U. Otherwise the Teacher

returns a counterexample, which is a string _r in the symmetric difference of Z: (C) and U.

Learning Assumptions for Compositional Verification 7

(1) let S = E = (.k}

loop {

(2) Update T using queries

while (S, E, T 1 is not closed {

(3) Add sa to S to make S closed where s E S and a E S

(4) Update T using queries

)
(5) Construct candidate DFA C from (S, E, T)

(6) Conjecture C is correct
if C is correct

(7) return C
else

Add e E _U" that witnesses the counterexample to E

}
(8)

FAg:5. The L* Algqritl3m

At a higher level, L* creates a table where it incrementally records whether finite strings in

L TM belong to U. It performs this by making membership queries to the Teacher. At various stages

during this process, L* decides that it is ready to make a guess. It constructs a candidate automaton

C based on the information contained in the table, and asks the Teacher whether the conjecture is

correct. If it is, the algorithm terminates. Otherwise, L* uses the counterexample returned by the

Teacher to extend the table with strings that witness differences between £ (C) and U.

In the following more detailed presentation of the algorithm, line numbers refer to L*'s illus-

tration in Fig. 5. L* builds an observation table (S, E, T) where S and E are a set of prefixes

and suffixes, respectively, both over 27%/n addition, T is a function mapping (S U S • S) . E to

{true, false}, where the operator "." is defined as follows. Given two sets of event sequences 19

and Q, .t9 . Q = {pq [p E/9 and q E Q}, where pq represents the concatenation of the events se-

quences p and q. Initially, L* sets S and E to be (A} (line 1), where A represents the empty string.

Subsequently, it updates the function T by making membership queries so that it has a mapping

for every string in (S t5 S - S) - E (line 2). It then checks whether the observation table is closed,

i.e., whether

Vs E S, Va E S,3s' E S, Ve E E : T(sae) = T(s'e)

If (S, E, T) is not closed, then sa is added to 5: where s E S and a E S are the elements for

which there is no s _ E S (line 3). Once this has been added to S, 5° needs to be updated (line 4).

Lines 3 and 4 are repeated until (S, E, T) is closed.

Once the table is closed, a candidate DFA C = (Q, aC, _, q0, F) is constructed (line 5), with

states Q -- S, initial state q0 = A, and alphabet aC --- Z (_' is the alphabet of the unknown

language U). The set of final states F-are the states s E_ su_ffBti-tha_f-T(-_-)---_xu--_.. Th_-tran-s_tion-

relation d is defined as _(s, a) = s _ where Ve E E : T(sae) = T(Je). Such an s _ is guaranteed

to exist when (S, E, T) is closed. The candidate C is presented as a conjecture to the Teacher

(line 6). If the conjecture is correct, i.e., if/2 (C) = U, the L* Algorithm returns C as correct

(line 7), otherwise it receives a counterexample c E S* from the Teacher.

The counterexample c is analyzed by L* to find a suffix e of c that witnesses a difference

between £ (C) and U; e must be such that adding it to E will cause the candidate to reflect this

8 JamiesonM.Cobteigh,DimitraGiannakopoulou,andCorinaS.P_s_eanu

difference4(line8).Oncee has been added to E, the L* Algorithm iterates the entire process by

looping around to line 2.

Characteristics of L*. Let M be the minimal automaton such that £ (M) = U. The L* algorithm

is guaranteed to terminate with M as its last co_ecture. The characteristic of L* that makes it

particularly attractive for our work is that at any stage, the automata that it generates are minimal.

In other words, if L* makes a conjecture C based on observation table (S, E, T), then any other

DFA C' that is consistent with (S, E, T) but not equivalent to C contains more states than C. In

addition, the conjectures made by L* strictly increase in size; each conjecture is smaller than the

next one, and all incorrect conjectures are smaller than M. If M has n states, L* makes at most

n- 1 incorrect conj ectures. The number of membership queries made by L* is O (kn 2 + n log m),

where k is the size of the alphabet of the language U, .n is the number of states in the minimal DFA

for U, and m is the length of the longest counterexample returned when a conjecmxe is made.

4.2 Learning for Assume-Guarantee Reasoning

Assume a system Mt P[M2, and a property P that needs to be satisfied in the system. In the

context of the compositional rule presented in Section 3, the learning algorithm is called to guess

an assumption that can be used in the rule to prove or disprove P. An assumption with which the

rule is guaranteed to return conclusive results is the weakest assumption A_, which restricts the

environment of M1 no more and no less than is necessary for P to be satisfied. Assumption A_

describes exactly those traces over 27 = (aMz U aP) A aM2 which, when simulated on M1 [1P_

cannot lead to state _-. The language/2 (A_,) of the assumption contains at least all traces of M2

abstracted to 27 that prevent MI from violating _P.

Formally, A,o is such that, for any environment component ME, (true) M1 [1 ME (P) if and

onl_ if (true) ME (A_) [14]. In our framework, L* learns the traces of A_o through the itera-

tive process described in Section 3. The process terminates as soon as compositional verification

retums conclusive results, which is often before the weakest assumption A_, is computed by L*.

For L* to learn A_o, we need to provide a Teacher that is able to answer the two different kinds

of questions that L* asks. Our approach uses model checking to implement such a Teacher.

Membership Queries. To answer a membership query for cr = (al,a2,...,a,) in ST* the

Teacher simulates the query On M1 I/ P- For cIarity of presentation we will reduce such simu-

lations to model checking, although we have implemented them more efficiently, directly as simu-

lations. So for string a, the Teacher first builds A_ = IQ, aA,,, 6, qo) where Q = {q0 ql,..., q,_},

aA,r = 27, d = {(q_,a_+l,q i+1) t 0 <_ i < n}, and qo = qO. The Teacher then model checks

(A,,) M1 (P). If true is returned, it means that cr E/2 (A_), because M1 does not violate P in the

context ofvTso-the Teacherremms-truer-Otherwise,_:he-answer-to-the-rnembership-queryds false:

Conjectures. Due to the fact that in our case the language £ (A_) that is being learned is prefix-

closed, all conjectures returned by L* are also prefix-closed. Our framework transforms these

conjectures into safety LTSs (see Section 2), which constitute the intermediate assumptions Ai.

4 The procedure for finding e is beyond the scope of this paper, but is described in [22].

LearningAssumptionsforCompositionalVerification

send ack

output k../ k_/

send ack ack

output output
send send

Fig. 6. A1 Fig. 7. A_ Fig. 8. Aa Fig. 9. A4

In our framework, the first priority is to guide L* towards a conjecture that is strong enough

to make_Step l_of_the compositi0n_ ru].e return true. Once this is accomplished, the resulting

conjecture may be too strong, in which case our framework guides L* towards a conjecture th_

is weak enough to make Step 2 return conclusive results about whether the system satisfies P.

The way the Teacher that we have implemented reflects this approach is by using two Oracles and

Counterexample Analysis to answer conjectures as follows:

- Oracle 1 performs Step I in Fig. 4, i.e., it checks (Ai) M1 (P). ff this does not hold, the

model checker returns a counterexample c. The Teacher informs L* that its conjecture Ai is

not correct and provides c I _ to witness this fact. If, instead, (Ai) M1 (-P} holds, the Teacher

forwards Ai to Oracle 2.

- Oracle 2 performs Step 2 in Fig. 4 by checking (true I M2 (Ai}. If the result of model check-

ing is true, the teacher returns true. Our framework then terminates the compositional veri-

fication because P has been proved on MI [[M2 (according to the compositional rule). If

model checking returns a counterexample, the Teacher performs some analysis to distinguish

the underlying reason (see Section 3 and Fig. 4).

- Counterexample Analysis is performed by the Teacher in a way similar to that used for an-

swering membership queries. Let c be the counterexample returned by Oracle 2. The Teacher

computes Acts and checks (Ac_s) M1 (P). If true, it means that M1 does not violate P

in the context of c, so c I S is returned by the Teacher as a counterexample for conjecture

Ai. If the model checker returns false with some counterexample e', it means that P is vio-

lated in M1 [[Ms, so there is no need for a more precise assumption to be generated. Our

framework then appropriately combines c with e' in order to generate a counterexample for

<true)M1 IIMs <P>.

-4=3--Example

Given components Input and Output as shown in Fig. 1 and the property Order shown in Fig. 2,

we will check (true} Input iI Output (Order} by using our approach. The alphabet of the as-

sumptions that will be used in the compositional rule is S = ((aInput U aOrder) n aOutput) =

{send, output, ack}.

As described, at each iteration L* updates its observation table and produces a candidate as-

sumption whenever the table becomes closed. The first closed table obtained is shown in Table 1 "

10 lamiesonM.Cobleigh,DirnitraGiannakopoulou,andCorinaS.P_tsSreanu

Table1.MappingT:

/$1 A

t loutput Itnlqel

I _ck !LTI

Is1- X/send /_e I
I /ou pu ,ack y se/
/]output, outputlf_se I
/ [output, send [fa_sel

Table 2. Mapping T2

52

T= A ack
A true true

output fNse fals_

send true false

ack true _lie

output false false
'send true false

output, ack false false

S"2 • _7 output, outputlfalse false

output, send ;false false
send, ack false false

send, output true true

isend, send true true
.......................

and its associated assumption, A1, is shown in Fig. 6. The Teacher answers conjecture A1 by first

invoking Oracle 1, which checks (A1) Input (P). Oracle 1 returns false, with cotmterexample

cr = (input, send, ack, input), which describes a trace in AI t1 Input I] Pert that leads to

state rr.

The Teacher therefore returns counterexarnple o- f S = (send, ack) to L*, which uses

queries to update its observation table until it is closed. From this table, shown in Table 2, the

assumption A2, shown in Fig. 7, is constructed and then conjectured to the Teacher. This time,

Oracle 1 reports that (A2) Input (P) is true, meaning the assumption is not too weak. The Teacher

calls Oracle 2 to determine if (true) Output (A2). This is a/so true, so our algorithm reports that

<true>Input tlOutput (P) holds.

This example did not involve weakening of the assumptions produced by L*, since the assump-

tion A2 was sufficient for the compositional proof. This will not always be the case. For example,

let us substitute Output by Output' illustrated in Fig. 3, which allows multiple send actions to

occur before producing output. The process will be identical to the previous case, until Ora-

cle 2 is invoked by the Teacher for conjecture A2. Oracle 2 returns that (true) Output' (A2) is

false, with counterexample (send, send, output). The Teacher analyzes this counterexample

and determines that in the context of this trace, Input does not violate P. The trace is returned to

the L* Algorithm, which will weaken the conjectured assumption. The process involves two more

iterations, during which assumptions Aa (Fig. 8) and A4 (Fig. 9), are produced. Using assump-

tion A4, which is the weakest assumption A_, both Oracles report true, so our assume-guarantee

framework reports that (true) Input II Output' (P) ho/ds.

5 Discussion

5.1 Correctness

Theorem 1. Given components M1 and Af2, and property P, the algorithm implemented by our

framework terminates and it returns true if P holds on]ff l II M2 and false otherwise.

Learning Assumptions for Compositional Verification I 1

Proof To prove the theorem we will first argue correctness of our approach, and then the fact that
it terminates.

- Correctness. The Teacher in our framework uses the two steps of the compositional rule to

answer conjectures. It only returns true when both steps return true, and therefore correctness

is guaranteed by the compositional rule. Our framework reports an error when it detects a trace

o- of M2 which, when simulated on M1, violates the property, which implies that fvll [[3,/2
violates P.

- Termination. At any iteration, our algorithm returns true or false and terminates, or continues

by providing a counterexample to L*. By correctness of the L* Algorithm we are guaranteed

that if L* keeps receiving counterexamples, it will eventually, at some iteration i, produce A,_.

During this iteration, Step 1 will return true by definition of A,_. The Teacher will therefore

apply Step 2, which will return either true and terminate, or a counterexample. This counterex-

ample represents a trace of M2 that is not contained in L(A,_). Since, as discussed in Section

_4LA_wjs both nece_ss_ and sufficient, analysis of the counterexample will return false, and

the a/gorithm will terminate-. C3

5.2 Practical Considerations

In our context, the languages queried by the L* Algorithm are prefix-closed. This is because

our technique applies to purely safety properties; any finite prefix of a trace that satisfies such

a property must also satisfy the property. Therefore, when for some string a a membership query

{A_,) M1 (P> returns false, we know that for any extension of a the answer will also be false. We

can thus improve the efficiency of the algorithm by reducing the cost of some of the membership

queries that are answered by the Teacher. For example, in the observation table shown in Tablel,

the entry for (output} is false. The Teacher can return false for the queries (output, ack),

(output, send>, and (output, output} without invoking the model checker.

In the framework presented, membership queries, conjectures and counterexample analysis all

involve model checking, which is performed on-the-fly. The assumptions that are used in these

steps are increasing in size, and grow no larger than the size of Aw. In our experience, for well-

designed systems, the interfaces between components are small. Therefore, assumptions are ex-

pected to be significantly smaller than the environment that they represent in the compositional

rules. Although the L* algorithm needs to maintain an observation table, this table does not need

to be kept in memory while the model checking is performed.

Note that our framework provides an "any time" [11] approach to compositional verification.

If memory is not sufficient to reach terrmnatiqn, intermediate assumptions are generated, which

may be usefial in approximating the requirements that a component places on its environment in

order to satisfy certain properties.

5.3 Extensions

Generalization. Our approach has been presented in the context of two components. Assume

now that a system consists of n components M1 II '" II M,_. The simplest way to generalize

our approach is to group these components into two higher level components, and apply the com-

positional rules as already discussed. Another possibility is to handle the general case without

12 JamiesonM.Cobleigh,DimitraGiannakopoulou,andCorinaS.P_eanu

computingthecompositionofanycomponentsdirectly.Ouralgorithmprovidesawayofcheck-
ing(true)Mt 1[M2 (]9) in a compositional way. If Me consists of more than one component,

our algorithm could be applied recursively for Step 2. This is an interesting future direction, in

particular since the membership queries concentrate on a single component at a time. However,

we need to further investigate how meaningful such an approach would be in practice.

Computing the Weakest Assumption. The L* Algorithm can also be used to learn the weak-

est possible assumption A_ that will prevent a component M1 from violating a property P. This

assumption will be generated without knowing M2, the component -$11 interacts with. The orfly

place in our assume-guarantee framework where -$I2 is used is in Oracle 2, when the Teacher tries

to determine if the Assumption generated is too strong. Oracle 2 can be replaced by a confor-

mance checker, for example the W-Method [6], which is designed to expose a difference between

a specification and an implementation. TbSs will produce a set of sequences that are guaranteed to

expose an error in the conjectured assumption if one exists. This approach to learning the weakest

..... assumptionAs an anytimealgofithm_[11]. _The sequence of_intermediate assumptions_conjectured

by the teacher are approximate and become more refined the longer the L* Algorithm runs. As

discussed previously, an approximate assumption can still be useful.

6 Experience

We implemented the assume-guarantee framework described above in the LTSA tool, and exper-

imented with our approach in the analysis of the executive subsystem for the K9 Mars Rover,

developed at NASA Ames. The executive receives flexible plans from a Planner, which it executes

according to the plan language semantics. A plan is a hierarchical structure of actions that the

Rover must perform. For increased autonomy, each action is associated with a number of state or

temporal pre-, maintenance, and post-conditions, which must hold before, dtmng, and on comple-

tion of the action execution, respectively.

The executive has been implemented as a multi-threaded system, where synchronization be-

tween threads is performed through mutexes and condition variables. The developer provided

design documents for several versions of the system. These documents described the synchro-

nization between components in an ad-hoc flowchart-style language. They looked very much like

LTSs, which allowed us to translate them in a straightforward and systematic way into the input

language of the LTSA.

One of the properties described by the developer refers to a subsystem of the executive consist-

ing of two components: .the main coordinating component named "Executive", and a component

responsible for monitoring state conditions named "ExecCondChecker". The property places the

following requirement on this subsyster_ irrespective of the behavior of the subsystem's environ-

ment: for a specific variable of the ExecCondChecker shared with the Executive, if the Executive

reads the value of the variab'W__Ch-_ke_-s_s-___

Executive clears it first.

We used our compositional verification framework to check this property on one of the newer

versions of the model. We set M1 = ExecCondChecker and Me = Executive. The experiment

was conducted on a Pentium HI 500 MHz with 1 Gb of memory running RedHat Linux 7.2 using

Sun's Java SDK version 1.4.0_01. To check the property directly by composing the two modules

with the property required searching 3,630 states and 34,653 transitions and took 0.535 seconds.

Learning Assumptions for Compositional Verification

Table 3. Results of the Rover Example

[Iteration IlJA_llStateslTransitionsl Result [
1 - Oracle I 1 5 [24 Too weak

f2-Oraclellt2 268[1,40s 'oo eak[3 -Oracle 1113 235 1,209 Tooweak

14- Oracle 1/ INot too weak

/4 - Oracle 21 Incompatible

13

Table 3 shows the results of using our assume-guarantee framework on this example, which

took 8.639 seconds. The IAi[column gives the number of states of the assumptions generated.

The States and Transitions columns give the number of states and transitions explored during the

analysis of the assumption and _e Result column gives _he res,'d,t of the .q.nalysis. When using

Oracle ! to determine if the Assumption was too weak, iterations 1-3 all determined that the

........... assumption-was-too weak_--In iteration 4, Oracle -I-determined that the learned assumption.was_not_

too weak. The assumption was then given to Oracle 2 that returned a counterexample which, when

simulated on the ExecCondChecker, led to an error state. Thus, the assume-guarantee analysis

concluded that the property does not hold. The largest analysis occurred when using Oracle I

during iteration 4, and this required exploring fewer states than checking the property directly.

We also used the L* Algorithm to generate the weakest assumption that the ExecCondChecker

makes on the Executive for the property described to be satisfied in this subsystem. The method

described in [14] needed 24.623 seconds to generate the 6 state weakest assumption. The L* A1-

gorithrn, using the W-Method for Oracle 2, took 9.530 seconds to generate the 6 state assumption,

although conformance testing kept running after that since it could not yet conclude if this was the

weakest possible assumption.

Assumptions for Java Programs. We are currently working on an implementation of our ap-

proach in Java PathFinder (JPF) [23], a model checker for Java programs developed at NASA

Ames. We have already developed a prototype with the assumption generation algorithm based on

the W-Method, and have experimented with it on several Java programs. To generate assumptions

for Java programs, no changes needed to be made to JPE but we needed to add a method call at

program points where actions of interest occurred. The Teacher calls JPF to answer both queries

and conjectures.

7 Related Work

One way of addressing both the design and verification of large systems is to use their natural

decompositionAnto__compoaaeJlts. Formal techniq_u_port of component-based design are

gaining prominence, see for example [9, 10]. In order to reason formally about components in

isolation, some form of assumption (either implicit or explicit) about the interaction with, or inter-

ference from, the environment has to be made. Even though we have sound and complete reasoning

systems for assume-guarantee reasoning, see for example [7, 16, 18, 21] and more recently [24], it

is always a mental chalIenge to obtain the most appropriate assumption [17].

It is even more of a challenge to find automated techniques to support this style of reasoning.

The thread modular reasoning underlying the Calvin tool [12] is one start in this direction. In the

14 JamiesonM.Cobleigh,DimitraGiannakopoulou,andCorinaS.P_eanu

frameworkoftemporallogic,theworkonAlternating-timeTemporalLogicATL(andtransition
systems)[1]wasproposedforthespecificationandverificationofopensystemstogetherwithau-
tomatedsupportviasvmbohcmodelcheckingprocedures.TheMochatoolkit[2]providessupport
formodularverificationofcomponentswithrequirementspecificationsbasedontheATL.

Inpreviouswork[14],wepresentedanalgorithmforautomaticallygeneratingtheweakest
possibleassumptionforacomponenttospecifyarequiredproperty.Althoughthemotivationof
thatworkisdifferent,theabilitytogeneratetheweakestassumptioncanalsobeusedtoauto-
mateassume-guaranteereasoning.Adisadvantageofthatalgorithmisthatit doesnotcompute
partialresults,meaningnoassumptionisobtainedif thecomputationrunsoutofmemory.This
mayhappenif thestate-spaceofthecomponentistoolarge.Ourapproachgeneratesassumptions
incrementallyandmayterminatebeforeA,_. is computed. Moreover, even if it nms out of memory

before reaching conclusive results, intermediate assumptions may be used to give some indication

to the developer of the requirements that the component analyzed places on its environment.

The problem of generating an assumption for a component is similar to the problem of gener-

_ ating componentinterfaces to deal with intermediate.state explosion in_CRA_Seyeral, approache_

have been defined for automatically abstracting a component's environment to obtain interfaces [4,

19]. These approaches do not address the issue of incrementally refining interfaces, as needed for

carrying out an assume-guarantee proof.

Groce et al have used the L* Algorithm for Adaptive Model Checking [15]. In this work,

the goal is to learn a model of a software system which can then be given to a model checker.

This approach is similar to our approach for learning assumptions using a conformance checker

and the L* Algorithm. To deterrmne if the model accurately describes the system, a conformance

checker is used, which is expensive in terms of time. Until an accurate model is obtained, this

process cannot be used to show that a property is satisfied and can only be used to help the analyst

discover a counterexample. In our approach, an inaccurate assumption can still be used to complete

an assume-guarantee proof.

8 Conclusions

Although theoretical frameworks for sound and complete assume-guarantee reasoning have ex-

isted for decades, their practical impact has been limited because they involve non-trivial human

interaction. In this paper, we presented a novel approach to automating such reasoning in an incre-

mental fashion. Our approach uses a lea_ruing algorithm to generate and refine assumptions based

on queries and counterexamples, in an iterative process. The process is guaranteed to terminate,

and return true if a property holds in a system, and a counterexample otherwise. If memory is
not sufficient to reach termination, intermediate assumptions are generated, which may be useful

in approximating the requirements that a component places on its environment in order to satisfy

certain proAgerties.

One advantage of our approach is its generality. It relies on standard features of model check-

ers, and could therefore easily be introduced in any such tool. Moreover, the architecture of our

framework is modular, so its components can easily be substituted by more efficient ones. It re-

mains to be shown, of course, how useful our approach will prove in practice. However, our early

experiments with real case studies provide strong evidence in favor of this line of research.

In the future we plan to investigate a number of topics including whether the learning algo-

rithm can be made more effÉcient in our context; whether different algorithms would be more

Learning Assumptions for Compositional Verification 15

appropriate for generating the assumptions; whether we could benefit by querying a component

and its environment at the same time, or by implementing more powerful compositional rules. An

interesting challenge will also be to extend the types of properties that our framework can handle

to include liveness, fairness, and timed properties.

Acknowledgements

The authors would like to thank Alex Groce for his help with the L* Algorithm, Willem Visser

and Flavio Lerda for their help in understanding the inner workings of JPK and Zhendong Su for

useful discussions on this work.

References

1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In Compositionali_: _Le

Significant-Difference- Afz International Sy-rd15osiu_, p-ages 23--:60, Sept_l997.

2. R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and S. Tasiran. MOCHA: Modularity

in model checking. In Proc. of the Tenth Int. Conf. on Comp.-Aided Verification (CAV), pages 521-525,

June 28-July 2, 1998.

3. D. Angluin. Learning regular sets from queries and counterexamples. Information and Computation,

75(2):87-106, Nov. 1987.

4. S. C. Cheung and 5. Kramer. Context constraints for compositional reachability analysis. ACM Trans.

on Soft. Eng. and Methodology, 5(4):334-377, Oct. 1996.

5. S.C. Cheung and J. Kramer. Checking safety properties using compositional reachability analysis. ACM

Trans. on Soft. Eng. and Methodology, 8(1):49-78, Jan. 1999.

6. T. S. Chow. Testing software design modeled by finite-state machines. IEEE Trans. on Soft. Eng.,

SE-4(3):178-187, May 1978.

7. E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model checking. In Proc. of the Fourth

Syrup. on Logic in Comp. Sci., pages 353-362, June 1989.

8. E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.

9. L. de Alfaro and T. A. Henzinger. Interface automata. In Proc. of the Eighth European Soft. Eng. Conf.

held jointly with the Ninth ACM SIGSOFT Symp. on the Found. of Soft. Eng., pages 109-120, Sept. 2001.

10. L. de Alfaro and T. A. Henzinger. Interface theories for component-based design. In Proc. of the First

Int. Workshop on Embedded Soft., pages 148-165, Oct. 2001.

11. T. Dean and M. S. Boddy. An analysis of time-dependent planning. In Proc. of the Seventh National

Conf. on Artificial Intelligence, pages 49-54, Aug. 1988.

12. C. Flanagan, S. N. Freund, and S. Qadeer. Thread-modular verification for shared-memory programs. In

Proc. of the Eleventh European Symp. on Prog., pages 262-277, Apr. 2002.

13. D. Giannakopoulou, J. Kramer, and S. C. Cheung. Behaviour analysis of distributed systems using the

Tracta approach. Auto. Soft. Eng., 6(1):7-35, July 1999.

14. D. Giannakopoulou, C. S. PitsAreanu, and H. Barringer. Assumption generation for software component

V_-ri_L`_tj-_n_a-Pr_fthe_Seventeen_h-IEEE-_nt-. C-_nf_n-Aut_.=_ft=Eng._-Se_t_2_2.

15. A. Groce_ D. Peled, and M. Yannakakis. Adaptive model checking. In Proc. of the Eighth Int. Conf. on

Tools and Alg. for the Construction and Ana(vsis of Sys., pages 357-370, Apr. 2002.

16. O. Grumberg and D. E. Long. Model checking and modular verification. In Proc. of the Second Int.

Conf. on Concurrency Theory, pages 250-265, Aug. 1991.

17. T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You assume, we guarantee: Methodology and case

studies. In Proc. of the Tenth lnt. Conf. on Comp.-Aided Verification (CAV), pages 440---451, June 28-

July 2, 1998.

JamiesonM.Cobleigh,DimitraGiannakopoulou,andCorinaS.P_sMeanu16

18.C.B.Jones.Specificationanddesignof (parallel) programs. In R. Mason, editor, Information Processing

83: Proceedings of the IFIP 9th World Congress, pages.321-332. IFIP: North Holland, 1983.

19. J.-P. Krimm and L. Mounier. Compositional state space generation from Lotos programs. In Proc. of the

Third lnt. Workshop on Tools and Alg. for the Construction and Analysis of Sys., pages 239-258, Apr.

1997.

20. J. Magee and J. Kramer. Concurrency: State Models & Java Programs. John Wiley & Sons, 1999.

21. A. Pnueli. In transition from global to modular temporal reasoning about pro_ams. In K. Apt, editor,

Logic andModels of Concurrent Systems, volume 13, pages 123-144, New York, 1984. Springer-Verlag.

22. R. L. Rivest and R. E. Schapire. Inference of finite automata using homing sequences. Information and

Computation, 103(2):299-347, Apr. 1993.

23. W. Visser, K. Havelund, G. Brat, and S.-J. Park. Model checking programs. In Proc. of the Fifteenth

IEEE Int. Conf. on Auto. Soft. Eng., pages 3-12, Sept. 2000.

24. Q. Xu, W. P. de Roever, and J. He. The rely-guarantee method for verifying shared variable concurrent

programs. Formal Aspects of Computing, 9(2): 149-174, 1997.

